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We formulate the general theory of random walks in continuum, essential for treating a collision rate
which depends smoothly upon direction of motion. We also consider a smooth probability distribution
of correlations between the directions of motion before and after collisions, as well as orientational
Brownian motion between collisions. These features lead to an effective Smoluchowski equation. Such
random walks involving an infinite number of distinct directions of motion cannot be treated on a lattice,
which permits only a finite number of directions of motion, nor by Langevin methods, which make no
reference to individual collisions. The effective Smoluchowski equation enables a description of the
biased random walk of the bacterium Escherichia coli during chemotaxis, its search for food. The
chemotactic responses of cells which perform temporal comparsions of the concentration of a chemical
attractant are predicted to be strongly positive, whereas those of cells which measure averages of the am-
bient attractant concentration are predicted to be negative. The former prediction explains the observed
behavior of wild-type (naturally occurring) cells; however, the latter behavior has yet to be observed,

even in cells defective in adaption.

PACS number(s): 05.40.+j, 87.22.Nf, 87.10.+¢

I. INTRODUCTION

How do we describe random walkers whose collision
rate depends continuously on position and direction of
motion? Although this question is within the realm of
statistical physics, the investigation presented here was
conducted with the aim of understanding the random
walks of the bacterium Escherichia coli during chemo-
taxis, the search for chemical attractants. The particular
cases we examine are chosen with E. coli in mind, but our
derivations make no explicit reference to bacteria and ap-
ply to any particles that obey our assumptions. After we
have established the theoretical foundations, we provide
applications.

When a random walker has a different collision rate for
each of the infinite possible directions of motion in two or
more dimensions, the walk defies a lattice treatment,
which involves only a finite number of directions of
motion. For instance, if we try to model a continuum
random walk with a direction-dependent collision rate on
a two-dimensional square lattice, even if we correctly
specify the collision rates for movements left, right, up,
and down, knowledge of the collision rates for all other
intermediate directions is lost. We also consider here two
other features that must be modeled in continuum:
correlations between the directions of motion before and
after collisions, and rotational Brownian motion, which
causes small gradual changes in direction of motion be-
tween collisions. An attempted lattice treatment of these
two features would also suffer from the lack of intermedi-
ate directions. The former effect is a generalization of the
“persistence” effect, studied by Goldstein [1], and Weis
and collaborators [2]. Previous works have also treated
correlations between successive directions of motion
when the collision rate is constant [3,4].

The random walks considered here also defy a
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Langevin treatment, in which no explicit mention is made
of distinct collisions. In the Langevin approach, the mac-
roscopic effect of collisions is summarized through the in-
clusion of a random force; this technique will not suffice
if microscopic features of individual collisions are to be
included, as they are here. In contrast, the treatment
here starts at smaller length scales and shorter time inter-
vals; particles head in ballistic trajectories, and have
specified collision rates. We have no need for a Langevin
term in our equations, because we derive the effect of col-
lisions, rather than summarize their effects through a ran-
dom force. This alternative approach to diffusion involv-
ing telegraph equations originated with Goldstein [1] and
Taylor [5], and was further studied by Kac [6] and Clay-
ton [7]. The approach developed by these authors natu-
rally generalizes to permit a description of walks involv-
ing direction-dependent collision rates, rotational
Brownian motion, and correlations between successive
directions of motion.

The continuum formulation has another important ad-
vantage over the lattice formulation. To derive diffusive
motion on a lattice with characteristic length 6 and time
increment 7, one generally takes the unphysical limit
82/27— D, the diffusion coefficient, as §—0 and 7—0.
However, in this limit the ballistic particle velocity be-
comes infinite, and it is no longer possible to explicitly re-
late a position-dependent ballistic velocity to the diffusion
coefficient and the drift velocity. In continuum, this un-
physical limit is avoided by looking, instead, at the long-
time limit of the ballistic motion. An alternative ap-
proach circumvents this issue by avoiding all limits [8].

One random walker that exhibits position- and
direction-dependent “‘collision” rate, correlations be-
tween directions of motion before and after “collisions,”
and rotational Brownian motion is the bacterium E. coli,
a flagellated microorganism approximately 1 um in diam-
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eter by 2 um long. During what are called “runs,” cells
of E. coli swim at roughly 20 p/s in approximately
straight paths, on average for about 1 s. Run durations
exhibit a Poisson distribution, and are terminated by
events called “tumbles.” The Poisson rate constant is the
“tumble rate,” whose reciprocal is the mean run dura-
tion. In contrast to runs, during which the cell’s flagella
rotate counterclockwise synchronously, during tumbles
the flagella rotate clockwise asynchronously. During
tumbles, which last on average about 0.1 s, the
bacterium’s position is essentially fixed, but its orienta-
tion changes. When the cell finishes tumbling and
resumes running, it swims off in a new direction chosen
approximately at random. Such alternation between runs
and tumbles produces a random walk in which tumbles
are analogous to the collisions of molecular diffusion.

The random walk of E. coli is further characterized by
several distinct features. To start, the new direction of
motion after a tumble is more likely to be in the forward
hemisphere: the distribution of angles between the new
and the previous directions of motion is peaked at about
62°. Furthermore, the paths taken during runs are not
completely straight. At 300 K, collisions with water mol-
ecules involve enough kinetic energy to gradually change
the cell’s orientation and direction of motion. This rota-
tional Brownian motion is characterized by a mean-
square angular deviation {6?), which grows linearly in
time, (6*)=2D,,t. For E. coli, D, ~0.1 rad®/s, so the
cell’s direction of motion deviates by about 90° in about
10 s. These basic facts about E. coli have been taken
from Refs. [9-11].

Perhaps the most fascinating aspect about the random
walk of E. coli is that it is a biased one: on average, cells
tend to drift toward chemical attractants. This behavior
is called chemotaxis. Experiments by Adler showed that
the cell detects attractants using chemoreceptors on the
cell’s body surface [12]. Using a tracking microscope,
Berg and Brown discovered the exponential distribution
of run durations [9]. Moreover, they found that when the
cell is heading in a direction of increasing attractant con-
centration, the cell lowers the tumble rate from the usual
~1 s~ 1. When heading in a direction of decreasing at-
tractant concentration, the cell maintains the tumble rate
at 1 s7! [9,13], or perhaps raises it very slightly [14].
This direction-dependent tumble rate enables the chemo-
tactic drift toward favorable regions of high attractant
concentration.

How does an E. coli cell determine whether its current
direction of motion is favorable? In a classic work [15],
Berg and Purcell showed that it was theoretically possible
for the cell to perform temporal comparisons of ambient
attractant concentration in a few seconds time, in spite of
microscopic fluctuations in local attractant concentra-
tion. Subsequently, such temporal comparisons were
found in experiments with wild-type (naturally occurring)
cells of E. coli tethered by a single flagellum to a glass
coverslip [16,17]. It was shown that E. coli modulates
the rotational bias, the fraction of time a single flagellum
spends rotating counterclockwise, as if it were a linear
system. Wild-type cells filter the attractant concentration
measured by its chemoreceptors in the recent past, C(z),
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with a characteristic biphasic impulse response, I(¢) (Fig.
1, left axis), designed to perform temporal comparisons.
Because the positive and negative lobes of the impulse
response have equal area, the wild-type cell essentially
averages the attractant concentration measured over the
last ~1 s, and subtracts the average of the ~3 s prior to
that. If the difference is positive, the bias is raised by an
amount proportional to this difference. If the difference
is negative, the bias is unaffected unless this negative
difference is very large [18].

These findings with tethered cells are in accord with
studies of swimming cells, which report little [14] to no
[9,13] rise in the tumble rate when a wild-type cell swims
down an attractant gradient. In run mode the cell’s
flagella all rotate counterclockwise, but it is not well un-
derstood how the biases of the cell’s many flagella are re-
lated to the tumble rate [19]. However, it is known that
when swimming in a favorable direction the cell lowers
the tumble rate by an amount proportional to dP /dt,
where P is the fraction of chemoreceptors bound to at-
tractant molecules [13]. Because

ap__ Kp dc

T (1.1)
dt  (K,+C)* dt

where K, is the dissociation constant of the chemorecep-
tor [13], when C <K

Q K—ld_c

dr 0P g (12)
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FIG. 1. Left axis: The impulse response of wild-type E. coli,
based on a fit with six exponentials to the data of Refs. [15,16].
The bias, the fraction of time a single flagellum spends turning
counterclockwise, is plotted as a function of time for cells sud-
denly exposed to a 1 mM increase in the attractant aspartate,
delivered over 0.02 s starting at time zero. Right axis: The
linear filter used by wild-type cells to detect changes in ambient
attractant concentration and to modulate the tumble rate ac-
cordingly, (1.3). It is assumed that this filter has the same shape
as the bias impulse response, shifted and scaled appropriately.
Because the positive and negative lobes of the filter have equal
area, the cell essentially averages the attractant concentration
measured over the last ~1 s, and subtracts the average of the
~3 s prior to that, as a finite difference approximation to
dC/dt. The scale has been chosen under the assumption that a
cell swimming at 20 um/s straight up an attractant gradient
with |[VC|=0.1 uM /um lowers the tumble rate to a~0.5 s™!

from ay~1s~L.
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and the tumble rate is lowered by an amount linearly pro-
portional to dC /dt, if dC /dt >0. Because the cell can-
not make an instantaneous measurement of dC /dt [15],
an approximate measurement is presumably carried out
by linear filtering with a filter I(¢) of the same charac-
]

t)= ©
L P [ 1nce—ndr<o,

when C <<K,. The gain g sets the magnitude of the
response to changes in attractant concentration.

A mutant strain (cheRcheB) of E. coli lacking the nor-
mal methylation and demethylation enzymes required for
performing temporal comparisons also acts like a linear
system, but its impulse response /() appears strictly pos-
itive (Fig. 2) [16,17]. Because the cheRcheB impulse
response has only a positive lobe, the cell raises the bias
and lowers the tumble rate, (1.3), in response to the aver-
age of the attractant concentration measured over the
last ~1 s. If a wild-type cell is suddenly moved to a new
environment of higher attractant concentration, the cell
initially lowers the tumble rate, but after ~4 s it adapts
to the new environment and returns the tumble rate to
the baseline value of =1 s~ !. In contrast, if a cheRcheB
cell is moved to a new environment of higher attractant
concentration, it does not adapt: the tumble rate is ini-
tially lowered and then maintained at the new lower rate.
But in both wild-type and nonadaptive cells, the attrac-
tant concentration measured in the recent past is used to
set the tumble rate, (1.3). Because the recent past of a
swimming cell may be at least partly characterized by the
cell’s current direction of motion, the cell’s tumble rate is
a function of the direction of motion, the key ingredient
of the random walks addressed in this article.

In Sec. II, we start off by considering a preliminary
one-dimensional random walk, in which the collision rate
and particle velocity depend on position but not direction
of motion, leading to four cases, each with different gen-
eralizations of Fick’s law. The results rule out a success-
ful chemotaxis in which the microorganism speeds up in
response to higher local attractant concentration. In Sec.
III, we examine one-dimensional random walks in which
the collision rate and particle velocity depend upon both
position and direction of motion. This analysis yields two
general classes of successful strategies for chemotaxis:
when moving in a direction of increasing attractant con-
centration, the cell may either lower the tumble rate,
speed up, or both.

In contrast with lattice models, in continuum models it
is considerably harder to generalize to dimensions higher
than one. Section IV illustrates the methods of the
higher-dimensional derivations by presenting what ap-
pears to be a new derivation of Fick’s law. In Sec. V, we
generalize to the cases in which the collision rate and the
particle velocity depend continuously upon spatial posi-
tion and direction of motion. Sections VI and VII con-
sider walks with correlations between the directions of
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teristic biphasic shape shown in Fig. 1, shifted and res-
caled appropriately (Fig. 1, right axis). This assumption
is the simplest possible that is consistent with the data on
both tethered and swimming cells and implies that the
tumble rate a(?) is set as

=2 [ “1(n)Ct—n)dr if [ “I(rC(t—rdr>0

(1.3)

r

motion before and after collisions, and with rotational
Brownian motion, respectively. In Sec. VIII, we examine
the effects of differences between members of the particle
or cell population. Precisely known collision rates, veloc-
ities, rotational diffusion coefficients, correlations be-
tween successive runs, are all replaced by probability dis-
tributions for these quantities. In Sec. IX, we apply the
effective Smoluchowski equation that results from a
direction-dependent tumble rate to investigate possible
successful strategies for chemotaxis using tumble rate
modulation. We predict the chemotactic responses of the
wild-type strain of E. coli to be strongly positive, and
those of cells defective in adaption to be negative.

From tethering experiments, some evidence exists that
cheRcheB cells may actually adapt partially over the
course of a few minutes, rather than a few seconds [17].
This evidence and observations of weak chemotactic
behavior [20-22] have led to conjectures of alternative
adaption systems to the normal methylation system
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FIG. 2. Left axis: The impulse response of the cheRcheB
strain of E. coli, modeled by eye from the data of Refs. [15,16].
The bias, the fraction of time a single flagellum spends turning
counterclockwise, is plotted as a function of time for cells sud-
denly exposed to a 3—-20 mM increase in the attractant aspar-
tate, delivered over 0.01-0.39 s starting at time zero. Right
axis: The linear filter used by cheRcheB cells to measure aver-
ages of ambient attractant concentration and to modulate the
tumble rate accordingly, (1.3). It is assumed that this filter has
the same shape as the bias impulse response, shifted and scaled
appropriately. Because the filter has only a positive lobe, the
cells cannot adapt. The scale has been chosen under the as-
sumption that a cell exposed to an ambient attraction concen-
tration of 100 mM lowers the tumble rate to a~1 s~! from

ap=3s L.



2556

[21,22]. In Sec. X, we examine whether it is actually
necessary to invoke an alternative to methylation adap-
tion to explain the observed weak chemotaxis of
cheRcheB cells.

II. A SIMPLE EXAMPLE

If the diffusion coefficient D becomes spatially depen-
dent, D(x), how does Fick’s law,

J=-DVp, 2.1)

relating the particle flux J to the particle concentration p
generalize? Is D simply replaced by D(x), or does —DVp
become —V(Dp)? As we shall now show, this question is
badly posed, because in different cases there are different
answers. Deciding upon the correct answer for a given
situation requires partial knowledge of the microscopic
mechanism for diffusion. For an alternative treatment
and for discussion of particular confusions in the litera-
ture, see Ref. [8].

To illustrate that no single generalization of (2.1) ex-
ists, consider two identically sized closed boxes, each con-
taining a very dilute gas. Each box also contains a dense
mesh of iron wool, so dense that the free path length be-
tween adjacent strands of iron wool is the limiting factor
on particle diffusion. If the two microscopic parameters,
8(x), the free path length, and 7(x), the free time interval,
vary sufficiently slower over space, (i.e., V8 <<8 and
8V <<7), it is meaningful to speak of the macroscopic
diffusion coefficient D(x), equal to 82/2r. Because two
microscopic parameters fix one macroscopic parameter,
many different pairs of 8(x) and 7(x) will yield the same
D(x). We will construct our two boxes of gas to exhibit
the same D(x), but for different reasons.

One box contains a uniform density of iron wool, so
that § is also uniform. This box also experiences an
externally fixed temperature gradient, so that §/7, the
mean particle speed, varies continuously throughout the
box. The second box is held at uniform temperature, but
the density of its iron wool is arranged to vary precisely
in the fashion needed to duplicate the D(x) within the
first box. In the second box, by the ideal-gas law the
equilibrium density of particles in the space not occupied
by the iron must be uniform, because the box is held at
uniform temperature. In the first box, the equilibrium
particle concentration cannot be uniform, because the
temperature is not uniform. ’

These two systems with the same D (x) exhibit marked-
ly different behavior when the diffusing particles ap-
proach equilibrium. How will the macroscopic diffusion
equation, which makes no reference to 8 and 7, only to
D(x), produce different equilibrium outcomes? When the
diffusion coefficient varies over space, there is not just one
macroscopic diffusion equation, but several; the choice of
the correct equation requires partial knowledge about
8(x) and 7(x). We now exhibit these diffusion equations
in the case of one dimension.

Although it is perhaps easiest to think intuitively in
terms of 8(x) and 7(x), the best variables for a continuum
treatment of diffusion are v(x) and a(x), the particle
speed and collision rate per particle, respectively. For
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the time being, we ignore distributions of particle speeds
and imagine that the local particle speed is fixed separate-
ly at every point in space. Because the gas in our boxes is
so dilute, collisions nearly always occur when particles
bump into strands of iron wool, rather than each other.
Thus, we also assume the collision rate is known precisely
at each point in space. We treat distributions of speeds
and collision rates in Sec. VIII and show that the speed
and collision rate in the derivations below are simply re-
placed by their mean values.

To start, we work in one dimension. During collisions,
assumed to be instantaneous, particles have an even
change of continuing in the same direction or reversing.
Thus, particles switch directions at a rate of a/2. Denote
by R(x,?) and L(x,?) the density of right- and left-
moving particles, respectively. We now require continui-
ty in the flow of particles between collisions and conser-
vation of particle number:

O9R _ _O3(WR) aR , aL

2.2
ot ox 2 2’ 2.23)
oL _ d(vL) , aR —alL

oL _Ova) L aX Tab 2.2
ot ox * 2 2 2.20)

Equations (2.2) comprise the standard starting point for
the telegraph model of diffusion [1,6,7], trivially modified
to account for a position-dependent speed. These equa-
tions may also be viewed as linearized Boltzmann equa-
tions, because deviation from continuous particle flow
arises from collision terms linear in the particle densities
(see, for instance, [23]). (Interestingly, when v is con-
stant, (2.2a) and (2.2b) have recently been shown to be re-
lated to the Dirac equation in 1+ 1 dimensions [24,25]).
Equation (2.2a) gives the rate of change of the number of
particles moving right at any point in space. The first
term on the right-hand side arises from spatial inhomo-
geneities in the number of right-moving particles. The
second and third terms represent the effect of collisions,
which cause right movers to become left movers and vice
versa. Define p and o as R +L and R —L, respectively.
p is the local density of particles, and vo equals J, the
particle flux. Adding and subtracting (2.2a) and (2.2b)
yields

dp _ —dlvo) _ —dJ

o ox ax (2.32)
9o _ —olvp) —ao (2.3b)
ot ox

Differentiating Eqgs. (2.3) and combining gives
Fp_3 [ o |, ar
32 ox v o +a o (2.4)

It is useful to distinguish three different regimes of
behavior exhibited in systems governed by (2.4). At =0,
we imagine a configuration of particles distributed
nonuniformly over a one-dimensional box of length L,
and each particle is posed to move either left or right.
For t <<1/a, the particle distribution appears to have
evolved through ballistic movements from the initial
configuration, because not enough time has elapsed for
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many collisions to occur. In this ballistic regime, the
numbers of right movers may differ strongly from the
number of left movers. For 1/a <<t <<aL?/v?, many
collisions have occurred, and the particle distribution ap-
pears to have evolved through diffusive movement from
the initial configuration. However, particles at one end
of the box have not yet had time to visit the other end,
and so equilibrium is not yet attained. As equilibrium be-
comes closer, the number of right movers and the num-
ber of left movers at each point will approach the same
value. For t>>aL?/v?, particles have had sufficient time
to visit each side of the box many times, and at each
point the number of right movers equals the number of
left movers, yielding zero flux. Here we are only interest-
ed in the two regimes for which ¢t >>1/a, so we now
neglect the second time derivative, as is standard when
studying diffusive properties of telegraph equations [1].
If we were to Laplace transform the time variable in (2.4)
in exchange for the imaginary angular frequency o, this
long-time approximation is equivalent to neglecting terms
quadratic and higher in ®/a. Physically, by neglecting
the second time derivative in (2.4), we only lose informa-
tion about the ballistic, high-frequency behavior of parti-
cle movements, which occur over short time intervals,
At <<1/a. For more on the long-time behavior of tele-
graph equations, see Refs. [1,26]. Neglecting 3%p/dt?, in-
tegrating (2.4), and ignoring constants of integration that
produce only steady-state behavior, we find the particle
flux:

_ —vXx) 3p _ v(x)p(x) dv
J(x) a(x) ox alx) 9x

(2.5)

The term that is proportional to dp/0x represents the
flux contribution from purely random, diffusive move-
ments, while the term that is proportional to p represents
the flux contribution from drift at velocity

—v(x) dv
a(x) ox

Vdrift —

(2.6)

Because of the minus sign in (2.6), particles tend to drift
toward regions where the speed is low.

Equation (2.5) deserves several further comments.

(1) In the case that v(x) and a(x) are constants, (2.5)
reduces properly to (2.1), and the diffusion coefficient D
equals v*/a.

(2) In box two, in which v(x) is constant but a(x)
remains spatially dependent, the form of Fick’s law is not
modified, but D becomes D(x) and equals Vv /alx):

Jx)=—D(x) £ . 2.7)
ox
The equilibrium solution of (2.7) is one of uniform parti-
cle density,

P=po - (2.8)

The spatial variations of the mean-free path do not affect
the uniform distribution of particles at equilibrium, only
the rate at which equilibrium is achieved.

(3) In box one, in which both v(x) and a(x) have spa-
tial dependence, but the mean-free path v(x)/a(x) is con-
stant, (2.5) becomes a modified version of Fick’s law
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J(x)=—23Pp) (2.9)
ox

and the diffusion coefficient is v*(x)/a(x). The equilibri-
um solution of (2.9) is

D, alx)v3

D(x)

P(X)=py =po =po| | 210

agvi(x)

where the constant p, is the density at reference point x,
at which the speed is v,. The equilibrium density of a
particle is inversely proportional to both the local parti-
cle speed and the resulting diffusion coefficient.

(4) In the case that a(x) is constant but v(x) remains
spatially dependent, (2.5) becomes yet a different generali-
zation of Fick’s law,

- 9 _p oD
J(x) D(X)ax 2 ax ’

and the diffusion coefficient is v*(x)/a. The equilibrium
solution to (2.11),

D,
D (x)

(2.11)

1/2
Yo

p(x)=p, Po , (2.12)

v(x)

again dictates that equilibrium particle density is inverse-
ly proportional to the local particle speed. However, in
this case the equilibrium particle density is inversely pro-
portional to the square root of the diffusion coefficient.

(5) When both v(x) and a(x) have spatial dependence
and their ratio is not a constant, no proper description
can be given in terms of D(x) and a generalized Fick’s
law. v(x) and a(x) are two microscopic parameters that
vary independently, and except in the special cases
(2)—(4) above, their effects cannot be summarized in
terms of one macroscopic parameter D(x). Nonetheless,
in all cases (1)—(5), the equilibrium solution of (2.5) yields
an equilibrium particle density that is inversely propor-
tional to local particle speed:

Yo

v(x)

p(x)=pq (2.13)

This simple example illustrates that to pick the correct
generalization of Fick’s law, one must have partial
knowledge about microscopic quantities. Equivalently,
the question ‘“What happens when the diffusion
coefficient varies over space?”’ is nonsensical unless more
information is provided. As for chemotaxis, (2.13) im-
plies that cells that speed up in response to higher local
attractant concentrations will aggregate in regions of low
attractant concentration. This strategy represents a form
of reverse chemotaxis. From (2.8), cells that lower the
tumble rate in response to local attractant concentration
aggregate uniformly at equilibrium.

However, as noted in [27,8], during the approach to
equilibrium such cells are initially more likely to head to-
ward regions of low tumble rate; this effect is called pseu-
dochemotaxis and in a closed space gradually resides after
cells have had sufficient time to visit all regions many
times. Given a specified D(x), the combination of (2.3a)
and (2.7)
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% _ 38

3t ax (2.14)

D(x)ég]
ox

governs the particle density evolution over intervals
At >>1/a. For general D(x), we may heuristically un-
derstand pseudochemotaxis through the following simple
paradigm. A single particle moves in one dimension at
constant speed v, and takes successive steps left and right
with even probability. When the particle is to the right
(left) of its origin, the duration of its steps is 75 (7).
After T seconds, where T >>7p and T >>7;, the
particle’s root-mean-square distance from the origin,
X is crudely approximated as

(Ve T)V? if x >0

(W, THV? if x <0 .

rms?

~
X rms =

(2.15)

If 7p > 7., the average particle position will gradually
shift right. Equivalently, the effective collision rate «a
equals 1/7, and so particles will head on average toward
the region of lower collision rate. Note that this argu-
ment relies on the infinite extent of the one-dimensional
space. In a closed space, particles bounce off walls, and
the average position eventually returns to the origin; for
illustrative graphs, see Refs. [8,27].

III. ONE-DIMENSIONAL THEORY

We now generalize (2.5) to the case when the collision
rate and velocity depend on the particle’s direction of
motion; Rivero et al. have analyzed the case of constant
velocity and direction-dependent collision rate [28]. The
insights gained here will be useful in Secs. V through VIII
for the treatment of higher-dimensional cases; here we
can solve for the particle flux exactly in the regimes
t >>a, whereas in dimensions two or more we perturb
around the equilibrium solution.

Before we proceed to the derivation, consider the fol-
lowing simple paradigm providing intuition. A single
particle moves in one dimension and takes successive
steps left and right with even probability. When moving
left (right), the particle has velocity v, (vR) and the step
lasts for duration 7, (rg). After N steps, for N a very
large number, the average position of the particle away
from its origin, {x ), and the time elapsed, T, are
J

'VR(XO)VL(.XO) VR(x)+VL(x)

plx)=p(xo)

VR(X)VL()C) VR(x0)+VL('x0)

where x, is a reference point. Equations (3.4) and (3.5)
tell us that two general classes of successful chemotactic
strategies exist. To drift toward regions of high attrac-
tant concentration, a cell moving in a direction of in-
creasing attractant concentration should either lower the
tumble rate, speed up, or do both.

Equation (3.4) can also be used to estimate the impor-
tance of the finite duration of tumbles; we have assumed
until now that collisions or tumbles were instantaneous.
In reality, the average tumble duration of the wild-type

exp {
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N

T=2

(g +71), (3.1a)

(JC):]—V‘(VRTR—VLTL) . (3.1b)

2
The left and right effective “collision” rates, a; and ag,
are 1/7; and 1/7g, respectively. Thus, the drift velocity
is
VRAL ~VLOAR

= . (3.2
aptap (3.2

v = (x) _VRTR —VLTL

drift T TR + T
Equation (3.2) indicates that particles tend to drift in the
direction with the higher speed and the lower collision
rate. These effects may compete.

Although the above simple paradigm does not allow
for spatially dependent velocities and collision rates, our
formal derivation shall allow for a;(x), ag(x), v;(x),
and vg(x); (3.2) will turn out to be correct when we
reduce to the case in which these four quantities are in-
dependent of space. Given particle velocities and col-
lision rates that depend on both position and direction of
motion, the requirements of continuous flow and conser-
vation of particle number are modified from (2.2):

9R d(vgR) agxR oa;L

=— — + :
at ax 2 2 G-32)
aL _9dlv L) agrR o, L

% ox + > S (3.3b)

The derivation proceeds similarly to that of Sec. II, and
the flux is

'VR’VLp (aL'VR —aRVL)

VR +'VL

_ 2vgtwvp) 3
)= (ap +ag) 9x

p-

(ap tag)
(3.4)

When the velocities vy and v, are constants, the drift ve-
locity from (3.4) reduces to that of (3.2), but when vz and
v; do depend upon position, there is an extra contribu-
tion to the drift velocity from the derivative in the first
term of (3.4). When the tumbling rates for left and right
movement are equal, (3.4) reduces to (2.5). The equilibri-
um solution of (3.4) is

aL(x,)'VR(x,)_aR(X')VL(xI)

x|, (3.5)

ZVR(X’)'VL(XI)

cell (~0.1 s) is roughly 10% of the run duration (~1 s)
when the cell swims in a direction of decreasing attrac-
tant concentration, and roughly 1% of the duration of
the longest runs up steep gradients (~ 10 s) [9]. The per-
centage of time spent tumbling is direction dependent, so
the cell has the lower effective swimming speed when
moving in a direction of decreasing attractant concentra-
tion. If 7 is the average tumble duration, the mean total
duration of run and subsequent tumble is
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(To)=7+1/a, (3.6)
while the mean distance travelled during a run is

(X ) =v/a . (3.7
The resulting effective swimming speed is then

Vet = Xpun ) /{ Ty ) =v(1+7a) 7! . (3.8)

From the values above, the effective swimming speed
when the cell heads down the attractant gradient =0.9v,
is about 90% of the effective swimming speed when the
cell heads up the steepest gradients =~0.99v. A simple
calculation shows that the decrease in drift velocity from
the overall lowering of the effective swimming speeds is
always more important than the accompanying increase
in drift velocity from the direction dependence of the
effective swimming speed, and so the drift velocity is
lowered by at most 1%. Thus, in wild-type cells the
effects of finite tumble duration are small. However,
some mutant strains have long tumble durations and
spend more than 90% of their time tumbling [21]; if this
behavior is a response to low absolute levels of attractant
concentration, rather than changes in attractant concen-
tration, then by (2.13) the long tumble duration would
indeed lead to significant aggregation in regions of low
effective swimming speed.

IV. FICK’S LAW IN CONTINUUM

Because there is a continuum of possible directions of
motion in two or more dimensions, rather than just left
and right, our higher-dimensional investigations will be
considerably harder than those done in one dimension.
To illustrate the techniques involved, we warm up by
deriving Fick’s law. The approach here is very different
from the lattice or Langevin derivations with which the
reader may be familiar.

The starting point for our higher-dimensional deriva-
tions will again be the requirements of continuous flow
and conservation of particle number. Let P(u,Xx,?) denote
the density of particles at position x, at time ¢, moving in
the direction of the unit vector u. If the particles move in
a space of dimension », u lies in the (n —1)-dimensional
unit hypersphere centered at the origin. « is the collision
rate and v is the particle speed, for now both assumed to
be constant. At each point x, we will be performing in-
tegrations over all possible directions of motion, denoted
by ¢d” 'u. The surface integral over the unit hyper-
sphere,

. w1 2" /2
Q(n) ﬁd u Tn/2)
we denote simply as Q(n). We write all vectors and ten-
sors in boldface font. As before, define p, the particle
density, and J, the particle flux:

p(x,t)= ﬁP(u,x,t)d”_lu ,

4.1)

(4.2a)
vo(x,t)EJ(x,t)EvﬁP(u,x,t)ud”_lu . (4.2b)

The requirements of continuous flow and conservation of
particle number lead to a separate equation for every u:
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a_P:_ -3y — __(Z__ ’ n—1.+
» vVP-u—aP+ Q0 ﬁP(u,x,t)d u

=—yVP-u—aP+—L— .
Q(n)
The first term on the right-hand side again represents the
effects of spatial inhomogeneities in the particle density,
and the second term represents the effect of collisions
upon particles moving in direction u, which subsequently
cease to move in this direction. The third term
represents the effects of particles that were moving in
direction u’, collided, and then moved off in direction u;
we integrate over all possible original directions u’. For
now, we assume that after a collision a particle has an
equal chance of heading off in any direction, so in the
third term we divide the total rate of collisions pa by the
total area of possible new directions Q(n).
The equilibrium solution of (4.3) is simply

(4.3)

(4.4a)
(4.4b)

p(x)=pg ,
P(u,x)=py,/Qn) ,

in which p, is the total particle number divided by the
volume of space. By equilibrium, we mean that not only
are the time derivatives of all quantities zero, but also the
particle flux J is zero. The equilibrium state is only one
type of steady state, in which time derivatives of all quan-
tities are zero, but the particle flux need not be zero. If
we hold the particle gradient Vp constant over time and
space, there is also a steady-state solution of (4.3):

_pkx) _vVp-u 4
P(u,x) Q) a0 (4.5)
Using (4.2b) and the identities
0=¢ud" 'u, (4.62)
Q(n)/n=§uud”_1u , (4.6b)
the particle flux arising from (4.5) is
.2
——vVp @.7)
na

By restricting our attention to a steady-state solution
with uniform particle gradient, we have found Fick’s law,
(4.7). What happens when Vp is not uniform over time
and space?

We now show that Fick’s law is valid over intervals
At >>1/a, if the gradient does not change appreciably
within the typical distance traveled between collisions,
i.e., szp <<a|Vp|. When Fick’s law is invoked as a phe-
nomenological equation, the restriction is well known
[29,30]. Integrating (4.3) over d" ~'u yields the general
equation of continuity

% __vyy, “.8)
ot

whereas multiplying (4.3) by u and then integrating gives
oo _ —1y—ad
S ="V $(Pun)d" " la— =% (4.9)

We now perturb around the steady-state solution (4.5) by
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writing P(u,Xx,?) as

p(x,t) 4 vVpu _ f({p},u,t)u-Jy
Qn)  aQn) v ’

It makes sense to write P(u,Xx,?) as in (4.10), because at
steady state the function f equals zero and (4.10) becomes
(4.5). Near steady state, if we define f as the small di-
mensionless functional of p that makes (4.10) true, we
lose no generality. Strictly speaking, the most general f
depends on the values of p all across space, and so is a
functional of p. Note that (4.10) only holds for ¢t >>1/a.
For t <1/a, one cannot deduce how many particles are
heading in each direction, P(u,Xx,1), simply from the total
density p(x,?), because most particles are still heading in
their initial directions of motion. Substituting (4.10) into
(4.9), using

0= ﬁuuud"’lu s

P(u,x,t)— (4.10)

(4.11)

and combining with (4.8) yields

2 2¢v72
%t%=%ﬂ+vv- |v- [7-$ ruuud"tu | | +avy.

(4.12)

As in Sec. II, for the study of diffusive behavior we
neglect the second time derivative when ¢ >>1/a, for it is
O(w?/a? if (4.12) is Laplace transformed. The second
term on the right-hand side of (4.12) is also negligible if
Vp does not change much over the typical distance trav-
eled between particle collisions, v/a, by the following ar-
gument.

If we do neglect the second term on the right of (4.12)
as well as the second time derivative, integrate, and dis-
card the integration constant, which adds only an unin-
teresting uniform flux, we solve for J and find Fick’s law,
(4.7). To check when the corrections to Fick’s law are
important, we substitute (4.7) back into (4.12), and find
that when

v|VI| << a|J| (4.13a)

and

V‘V' [Vp-ﬁfuuud”_lu] |<<a|Vp| , (4.13b)
the corrections are small. (By the absolute value of a ten-
sor, we mean here the square root of the sum of the
squares of all its components.) When the rank-two tensor
VVp is zero and ¢t >>1/a, we are in the steady state de-
scribed by (4.5) and so f is zero. Near the steady state,
when v|VVp| is everywhere small compared to a|Vp| and
all higher derivatives of p are even less important, (4.13a)
is satisfied and the leading correction to f =0 will be of
order O(VWV”I/awm)‘ Thus, when v|VVp|<<al|Vpl,
corrections to Fick’s law are small. Physically, this
means that when Vp does not change much over the typi-
cal distance traveled between collisions, Fick’s law is
good.

The analysis of this section is easily extended to ac-
count for position-dependent speed v(x), and collision
rate a(x). As emphasized in Sec. II, one finds that the
equilibrium density of particles is inversely proportional
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to v(x), (2.12), and that the generalization of (4.7),
J= —v(x)V(vp)

na(x) , (4.14)
is valid when
v|V(V(vp)/a)| << |V(vp)l . (4.15)
Note that for (4.15) to be fulfilled, the condition
v|Va| <<a? (4.16)

upon the collision rate must hold. Equation (4.16) says
that the fractional change in the collision rate over the
typical distance traveled between collisions must be
small; a similar restriction is noted in [8].

V. DIRECTION-DEPENDENT COLLISION RATE

We now allow for a particle velocity that depends upon
position, v(x), and a collision rate that depends upon po-
sition and direction of motion, a(u,x). Both v(x) and
alu,x) are scalar fields that are fixed in time. Keeping
spatial dependencies implicit, the generalization of (4.3) is
then

oP _

u— .__.1_ ’ n—1..+
5, =~ VPV ru—awP+ oo G Pau)d"

(5.1

This continuity equation is known [31], but the deriva-
tion below for the flux is new. For a review of this and
other continuity equations, see [32]. Integrating (5.1)
over d" ~lu, we again obtain (4.8), but now

J(x,t)=v(x)§P(u,x,t)ud""1u=v(x)a(x,t) . (5.2)
Multiplying (5.1) by u and integrating over d" 'u, we
find

oo

—aT=—V- [vﬁ(Puu)d"_lu ] — ﬁ[Pa(u)u]d”_lu .

(5.3)

The equilibrium condition for p is found by setting J
and all time derivatives everywhere zero. Although
p(x)=p, is no longer the equilibrium solution as in Sec.
1V, it should be intuitively clear that at equilibrium,

P(u,x)=p(x)/Qn) . (5.4)

Like (4.4b), (5.4) implies that at any point in space, an
equal number of particles are moving in each direction,
resulting in zero flux. Unlike (4.4b), (5.4) implies that the
actual density of particles is spatially dependent; howev-
er, unless the particle velocity has direction as well as
spatial dependence [i.e., v(u,x)], then (5.4) will yield zero
flux by (5.2).
At this point, it is useful to express a(x,u) as a power
series in u:
a(x,u)=ag(x)+[a(x)u]+[ayx)u-u]
+[as(x)-uw-u-u]+ - - (5.5)

The coefficients a;(x) are spatially dependent tensors of
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rank k. To start, we consider the case in which

a(x,u)=ay(x)+a,(x)u. (5.6)

Equation (5.6) shall be useful in describing chemotactic
E. coli (see Sec. VII). In this case, we now show that the
equilibrium solution of (5.1) is (5.4), where p(x) at equilib-
rium will be determined. The general case (5.5) is con-
sidered in Appendix A, where it is shown that if terms
quadratic or higher exist in the series expansion (5.5),
then (5.4) cannot describe equilibrium. Using (5.4), (5.6),
and setting the time derivative equal to zero in (5.3) yields

(5.7

Substituting (5.4) and (5.7) into the right side of (5.1)
indeed yields zero, showing that (5.4) and (5.7) comprise
the equilibrium solution. Solving the differential equation
(5.7) shall yield the generalization of (4.4a).

Before we solve (5.7), note that it is only meaningful to
talk about an equilibrium solution if the vector field
a,(x)/v(x) can be written as the gradient of some scalar
field, Vé(x). If it cannot, then the equilibrium condition
(5.7) is unattainable, for it would imply the contradiction

Vivp)=—pa, .

YOP) _gin(vp))=—2L . (5.8)
vp v

Even if a(x)/v(x) cannot be written as the gradient of
some scalar field, this does not exclude the possibility of
steady-state solutions with nonvanishing particle flux;
however, we shall not consider such solutions here.

If equilibrium can be reached, then (5.7) says that two
effects balance. The left side of (5.7) represents the effect
of the gradient, increasing the net flow of particles to-
wards regions of low particle density and low speed. The
right side represents the effect of the direction-dependent
collision rate, increasing the net flow of particles in the
direction —a,(x). The solution to (5.7) is

_ 'V(Xo) x _al(X') ,
P(x)=p(xo)——exp fxO o |

— p(xg) 22 o — [b(x)— b(xg) (5.9)

—p x0 'V(X) exp{ [¢X ¢X0 ]} ’ .

where x; is a reference point and the line integral in (5.9)
yields a single-valued p(x) only because a,(x)/v(x) equals
the gradient of a scalar field, Vé(x), by assumption. Asin
Secs. II, III, and IV, the factor v(x,)/v(x) increases parti-
cle aggregation in regions of low speed. In addition, the
factor e “#®) increases aggregation in regions of low ¢. It
is important to note that a, does not affect the equilibri-
um density, although it shall enter the expression for the
flux.

Having found the equilibrium distribution, we now
consider the approach to equilibrium. Combining (4.8),
(5.2), and (5.3) yields

%%=V~ [VV' [vﬁ(Puu)d"_lu] l
+V- [v§@Puia” ] . (5.10)

Substituting (5.6) into (5.10) and then using (5.2) gives
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2
_a_B_:V. vV-

o4 [vsﬁ(Puu)d"—luJ ] +V-(agd)

+V-(va; $(Pun)d” 'u) . (5.11)
At the analogous stage in the derivation of Sec. IV, we
solved (4.12) by perturbing around the steady-state solu-
tion we had found, and concluded that Fick’s law was
valid when v|VVp| <<a|Vp|. In contrast, here we do not
have such a steady-state solution. Instead, we perturb
around the equilibrium solution by approximating
P(u,x,t)=~p(x,t)/Q(n) in (5.11):

2 va
%%:V_ W l’nﬂ +V-(aJ)+V- i (5.12)
t

Note that this approximation does not imply that we are
already at equilibrium, because we allow for changes in
p(x,t) over time. Again, as in Sec. II, we neglect the
second time derivative after ¢ >>1/a. This long-time ap-
proximation yields the generalization of Fick’s law, with
both diffusive and drift contributions to the particle flux:

—vV(vp) VP2,
na, na,

J= (5.13)
If equilibrium can be attained, an identically zero J in

(5.13) indeed yields (5.7). In an analysis similar to that of
Sec. IV, (4.10)-(4.16), if we write

p(x,t) _ f{p},u,t)u-J
Q(n) v ’

it is found that (5.13) is valid close to equilibrium when
[V(vp)+pa,| <<agp.

Combining (5.13) and the equation of continuity (4.8)
yields an effective Smoluchowski equation:

P(u,x,t)— (5.14)

¥p _y. |¥Vp) | VP (5.15)
ar? na, nag

From (5.15), we see that if the particles have mass m,
they each experience an effective force

F = Vrre) (5.16)

n

The effective force is not a true force, because it arises
partly from direction-dependent collision rates, not ac-
celerations. As evident in (5.16) and in the equilibrium
distribution (5.9), the total effective force is a sum of two
others, one in the direction of lowest collision rate, the
other in minus the direction of the particle speed gra-
dient.

VI. ANGULAR CORRELATIONS

In this section and the next, we consider two features
unique to dimensions two and higher, which cannot be
treated using Langevin or lattice methods. In contrast,
the continuum formalism is naturally suited for these
generalizations.

We had previously assumed that after a tumble or col-
lision, the particle had an equal chance of heading off in
any direction. Now, the outgoing trajectory is more like-
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ly to be in the same hemisphere as the incoming trajecto-
ry. If the incoming trajectory is in direction u, the condi-
tional probability density that the outgoing trajectory is
in direction u’ is given by the angular correlation func-
tion y(u’,u,x). Angular correlations can be viewed as a
generalization to dimensions two and higher of the “per-
sistence” effect studied by Goldstein [1], and Weis and
others [2]. For these authors, persistence is a one-
dimensional effect characterized by the increased likeli-
hood for a particle to head off in the same direction after
a collision that it had before. Our results for angular
correlations will reduce to known results for persistence
in one dimension.

For E. coli, y(u',u) depends only on the absolute
difference |u’—ul, which is the sole case that we shall
consider here. When y(u’,u) is normalized correctly, the
integral over all possible outgoing directions should equal
one, by conservation of particle number:

Priw,ud" w=1. 6.1)
Here, we consider ¥ (|u’—u|), and so also,
Py(u,u)d" lu=1. (6.2)

The angular correlations are characterized by ®(x), the
mean cosine of the angle between successive directions of
motion:

Py, wud" 'u'=0u. (6.3)
To account for angular correlations, the third term in
(5.1) is modified to reflect the nonuniform distribution of
new directions of motion after collisions:

a—P——‘ —V(Pv)-u—a(u)P(u)
ot

+ @ P(u)a(u)y(u,u)d" " lu’, (6.4)
where all spatial dependencies are kept implicit.

Assuming (5.6), we now show that the equilibrium
solution of (6.4) is again given by (5.4) and (5.7), but with
an effective a, 4 replacing a;,. Integrating (6.4) over
d” 'u and using (6.1) yields the equation of continuity
(4.8). Multiplying (6.4) by u, integrating over d" ~'u, and
using (6.3) yields

do

—at_:—v' [Vﬁ[P(u)uu]d"“‘u

—(1—0)$ [P(u)a(u)uld” 'u. 6.5)

Except for the factor (1—0), (6.5) is identical to (5.3), and
it is straightforward to show that the equilibrium solution
of (6.4) is given by (5.4) and

V(vp)=—pa,(1—0) . (6.6)
Equilibrium may only be attained when the condition

a;(x)[1—0(x)

1= 6x)] =Vé(x) 6.7)

v(x)

is fulfilled, for some function ¢(x). If this condition is
fulfilled, then a,(1—®) acts like an effective a,; .4 and re-
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places a; in the equation for the equilibrium distribution,
(5.9). Perturbing around the equilibrium solution, the
particle flux is found to be

—vVivp) VPa,
nay(1—0®) na, ’

(6.8)

when |V(vp)+p(1—0)a,| << agp.

In Secs. IV and V, we implicitly considered the case
when no correlation between successive trajectories ex-
ists, i.e., y(u’,u) is 1/Q(n) for all u’ and u, and so @ is
everywhere zero. If correlation between successive tra-
jectories is total, in other words, no changes of direction
are allowed, then y(u’,u) will equal 8" "Y(u' —u), ® will
equal 1, and a, . will be zero. Consequently, in this case
the equilibrium particle density will be uniform over
space, (6.6). However, when y(u’,u) equals 8" ~'(u’—u),
particles never change their direction of motion, so if the
initial particle distribution is not already at equilibrium,
equilibrium will not be attained. In all cases, the factor
1— 0O reduces the relative contribution of the drift term
in (6.8) to the particle flux.

In one dimension, we replace the integral in (6.3) with
a sum, and (6.8) reduces to the flux equation with per-
sistence found by Goldstein [1]. Furthermore, (6.8)
agrees with a formula found by arguments originating
with Flory [3]. Lovely and Dahlquist extended Flory’s
treatment of polymers to allow for distributions of con-
stituent monomer lengths and angles between successive
monomers [4]. When the monomer lengths are exponen-
tially distributed, they apply the result to chemotaxis and
find the diffusion coefficient

1/2

D na(l—®) °
Equation (6.8) generalizes (6.9) to the case when the parti-
cle speed and collision rate vary spatially, and the col-
lision rate depends upon direction of motion; the result is
that angular correlations do not affect the drift velocity,
only the diffusion coefficient. It is not hard to build an
intuitive picture of why this should be so.

If we consider a random walk at constant speed,
without angular correlations, and with a,=0, adding an-
gular correlations cannot introduce a drift velocity.
However, if we imagine an initial configuration of parti-
cles all moving in the same direction, adding angular
correlations certainly increases the relaxation time to
equilibrium, because it takes longer for the system to at-
tain a random distribution of particles moving in every
direction. Hence, adding angular correlations must lower
the effective collision rate of the diffusive term, as (6.8)
and (6.9) state.

Furthermore, consider a random walk without angular
correlations but with a drift term due to nonzero a;.
Now add angular correlations with a mean cosine ® of
roughly 0.5, corresponding to a 60° angle between succes-
sive directions. For each direction of motion, the
effective correlation time is essentially doubled, because
now it will take roughly two collisions instead of one to
wipe out any correlation between previous directions of
motion. However, this change is true for all directions;
all effective tumble rates are divided by two. But the drift

6.9
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velocity depends only on the ratio @, /o, and is therefore
unchanged, as (6.8) says.

VII. ROTATIONAL BROWNIAN MOTION

In addition to the large and sudden changes in parti-
cles’ directions of motion caused by collisions, there may
also exist small gradual random changes from rotational
Brownian motion; such changes are characterized by the
rotational diffusion coefficient D . Between collisions, a
particle will, on_average, change its direction of motion
by an angle V2D, At after a short interval Az. More
precisely, if we consider a species of particle that does not
experience collisions, and if W(u) is the total number of
particles moving in direction u,

W(u,0)= [ P(u,x,1)d"x (7.1)

then rotational Brownian motion implies

v

W =D rot Vﬁ\ll ’
where V2 is the Laplacian in direction space. Equation
(7.2) is analogous to the standard Fick’s law describing
diffusion in real space found by combining (4.7) and (4.8)

(7.2)

2
%f—=%ﬂ . (7.3)

For particles that do experience collisions, we modify
(5.1) to account for rotational Brownian motion in a
fashion similar to (7.2):
oP 1

- = — oy — — n—1,+ 2
ar — VP u—aP+ s $Pad" 'w+D,, V2P .

(7.4)

Assuming (5.6), from (7.4), it is straightforward to show
that the equilibrium state is still described by (5.4), (5.7),
and (5.9). Manipulations similar to those of Secs. IV and
V yield

— vpa
V) o+ P D v [$PVING" M| 05)

As shown in Appendix B, the Laplacian in direction
space, V2, acting on u, merely gives (1—n)u. Using this
fact, (7.5) yields

J=—— vV(vp)t+vpa, ] . (7.6)

nlay+(n—1)D,]

Equations (7.5) and (7.6) are only valid in the long-
time approximation and when |V(vp)+pa,l
<<[ay+n—1)D,]p.

In some sense, rotational Brownian motion has exactly
the opposite effects of angular correlations. Whereas an-
gular correlations decrease the effective tumbling rate in
the diffusive term, rotational Brownian motion increases
it. When particle speed is constant, angular correlations
affect the equilibrium particle distribution, but not the
drift velocity. In contrast, rotational Brownian motion
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does not affect the equilibrium configuration, but does di-
minish the drift velocity.

It makes good physical sense that rotational Brownian
motion diminishes the drift velocity (when particle speed
is constant). Suppose D, is of the same order of magni-
tude as a typical a(u). Directions that would otherwise
be characterized by a long correlation time, i.e., direc-
tions with a low collision rate, have the correlation time
cut short by the upper cap of roughly D l. Directions
with very high collision rates and correlation times short
compared to D ! are hardly affected. Thus, the drift ve-
locity should decrease, as (7.6) says it does.

Why do angular correlations affect the equilibrium
configuration but rotational Brownian motion does not?
Rotational Brownian motion takes place constantly, but
correlations appear only at collisions and hence have
more importance when a particle is moving in a direction
characterized by a high collision rate.

VIII. POPULATION DISTRIBUTIONS

Until this point, we have assumed that the particle
speed, collision rate, mean angle between runs, and rota-
tional diffusion coefficient are all uniquely determined at
each position in space for a given direction of motion.
We now relax this assumption and allow different parti-
cles of the population to have different characteristics; all
quantities that characterize the particles’ biased random
walk will now be chosen from a probability distribution
Y(x,v,a(un),y(u’,u),D,). We assume this probability
distribution is fixed in time and also local, i.e., the proba-
bility that a given particle at position x has a speed v,
mean cosine of the angle between successive runs ®, tum-
ble rate a(u), and rotational diffusion coefficient D, is
independent of the probability that when at location x’,
the particle will take on some other values of these func-
tions. However, at a fixed location x, different particle
characteristics are not independent; for example,
(v(x)){alx,u)) #={v(x)a(x,u)), where { ) means aver-
aged over the distribution ¥(x,v,a(u),y(u’,u),D,). To
avoid clutter, when computing averages we shall keep in-
tegrations that do not affect the averaged quantity, as
well as spatial dependencies, implicit. In other words,
(v(x)) shall be written as

[vivdy ,
rather than as
f ff_[’w/;(x,v,oc(u),7/,Dmt YdvdD . DaDy .

Note that the distribution ¥(x,v,a(u),y(u’,u),D ;) is a
functional of ¥ (u’,u) and a(u), so we use the script D to
indicate functional integration. As before, we only con-
sider ¥ (u’,u) that obey (6.1)-(6.3) and a(u) of the form
(5.6). Thus,

(a(u)) = [a(wy(a(u)Da
=fa(u)lp(ao,al)dozod”a1
=f(ao+a1'u)¢(a0,a1)da0d"a1

=(ay)+{a;)u (8.1)
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and
§ (y(u',w)d" o’

= [ [y wutya,uny |dn

= [ [$rewwuty,ma |or=1.

(8.2)

Similarly,
$(y(w,u)d"u=1, (8.3)
¢<7/(u',u))u'd"_’u’=(®)u . (8.4)

In the generalization of (6.4) and (7.4), each term is
now averaged over the distribution . For instance,
V(vP)-u is replaced with V(P f viy(v))-u. These replace-
ments yield
L — —vp(v))u—Pu)am)

+ §P(u’)(a(u')y(u,u’))d""u'+ (D, )V2P .
(8.5)

Using (8.1)~(8.4), it is straightforward by now to proceed
from (8.5) and to find that the equilibrium distribution is
characterized by

V{v)p)=—p(a;)—{a;®)), (8.6)

and so ({a,;) —{(a;®)) replaces a, in (5.9). Of course,
the condition

((al>_<a1®>) _
(v) B

for some ¢(x) must be fulfilled for equilibrium to be possi-
ble. Using

J= fv ﬁPud”_lu ]1/;(v)dv=(v) ¢Pud"*1u , (8.8)
and perturbing around the equilibrium solution, the flux
is found to be

(MHIVEWIp)+H(v)p({a;)) —(a;®))
n({ay)—{ay®)+(n—1)D,,))

V¢ (8.7)

(8.9)

Equation (8.9) is valid in the long-time approximation
close to equilibrium when

IV{v)p)+p({a,;)—(a,;®))]
<<({ag)—Cag®@)+(n—1){D,,?) .

Equation (8.9) can be applied to three different types of
effective population differences:

(1) Variation within a species or strain. Each individual
cell of a particular strain of E. coli will obviously be
slightly different from all others of the same strain. To
find the cell flux from (8.9), we use the strain average
speed, tumble rates, etc. In treating the variations be-
tween individuals, the assumption of local probability dis-
tributions is quite restrictive. Although certain devia-
tions of an individual cell’s behavior from the mean may
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be uncorrelated from point to point, other deviations may
not be. For instance, certain cells may always swim fas-
ter than the strain average speed; such deviation from the
mean is certainly not local, because there are strong
correlations between different locations. In contrast, a
cell exhibiting local deviations from the mean would
swim faster than the strain average speed sometimes, but
slower other times. The formulation presented here is
not sufficient to treat nonlocal probability distributions.
Cells that always swim faster than the strain average
speed are effectively a different species with their own
strain average speed. For such problems, a multispecies
formulation is necessary, rather than the single-species
formulation presented here.

(2) Fluctuations in attractant concentration. At a mi-
croscopic level, the concentration of the chemical attrac-
tant constantly fluctuates, even though it may appear un-
changed macroscopically. If the cell’s method for detect-
ing changes in the macroscopic attractant concentration
is to be insensitive to these fluctuations, the cell’s
chemoreception system must be able to perform averages.
Fluctuations in attractant concentration are assumed to
exhibit a Gaussian distribution with zero mean. Under
these conditions, Berg and Purcell showed that the root-
mean-square percentage error in the detection of attrac-
tant concentration is inversely proportional to the square
root of both the duration of the measurement and the
average attractant concentration itself [15]. As a result,
cells modulate the tumble rate based on averages of at-
tractant concentration measurements taken over a second
or more [16,17]. However, from (8.9), if (8.1) remains
valid, then the rms percentage error does not affect the net
chemotactic flux of cells. This conclusion has been
verified by computer simulation [33]. Of course, a poor
chemoreception system might drastically affect an indivi-
dual cell, preventing it from reaching a region of high
food concentration before the food is injested by compet-
ing cells. But over a full lifetime (if the cell makes it that
long), even a cell with a poor chemoreception system
should experience as many accidental windfalls as disap-
pointments. However, this conclusion is false if (8.1) no
longer holds; such scenarios shall be examined in depth
elsewhere [33].

(3) Trajectory averages. As described in Sec. I, E. coli
uses attractant concentrations measured in the recent
past to modulate the tumble rate, and so the tumble rate
is direction dependent. However, the tumble rate is not
only a function of direction and position. Two cells at
the same spot heading in the same direction have not
traveled identical trajectories. The cells’ prior meander-
ings from rotational Brownian motion will not have been
identical, nor will the times of the cells’ last tumbles.
Therefore, the attractant concentrations measured during
the last ~4 s will not have been identical, so neither will
the cells’ tumble rates be identical, even if the physiologi-
cal and measurement differences described above were
somehow eliminated. However, if we consider a cell at a
given spot heading in a certain direction, and average
over all possible. trajectories the cell could have taken to
arrive in such a state, weighted by the probability of each
trajectory’s occurrence, then the trajectory-averaged
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tumble rate is a strict function of position and direction.
It is such trajectory-averaged quantities that should enter
(8.9).

IX: STRATEGIES FOR CHEMOTAXIS

Using (1.3) and (8.9), we shall compare the chemotactic
strategies of cells that respond to temporal changes in at-
tractant concentration and those that respond to the
averages of absolute concentration of attractant. When
moving in a favorable direction, the wild-type cell lowers
the tumble rate by an amount proportional to the
difference of the average attractant concentrations mea-
sured during the last ~1 s and the ~3 s prior to that. If
the attractant concentration gradient does not change
much over the course of a single run, i.e,
vV2C <<a|VC|, this finite difference is an approximation
to the time derivative 3C /3¢, and so we approximate (1.3)
as

a(t)ZaO—g%f—Zao—gvVC'u , (9.1)
for a cell swimming at constant speed v in direction u,
when VC-u>0. The gain g has dimensions of inverse at-
tractant concentration and is proportional to the gain of
Eq. (1.3), g, which has dimensions of inverse attractant
concentration times inverse time. Equation (9.1) is a use-
ful approximation because it yields a tumble rate that de-
pends only upon the cell’s position and direction of
motion. However, as discussed in Sec. VIII, such an ap-
proximation is not valid unless we perform trajectory
averages, to account for differences in prior tumble times
and rotational Brownian motion. But it will not suffice to
blindly replace quantities in (9.1) with their trajectory-
averaged value, as in

(a)=(ay)—gvVC-u={ay)+{a;)u. 9.2)

In Sec. VIII, we required that all the tumble rates be-
ing averaged over were of the form (5.6). Equation (1.3)
does not meet this requirement, and so we cannot expect
the wild-type trajectory-averaged tumble rate to satisfy
(9.2). However, we know that the trajectory-averaged
tumble rate will be a monotonically increasing function of
the angle between the attractant gradient VC and the
direction of motion u:

(a)=(ay)—h(u-VC), 9.3)

where 4 is a monotonically decreasing function. We now
expand (9.3) in a power series in u-VC, and because we
are primarily interested in qualitative behavior, we trun-
cate the series after linear order. After factoring out the
swimming speed v from the coefficient of the linear term,
we find a tumble rate of the form (9.2). The gain g in (9.2)
contains all the factors of order unity arising from the
average over all the possible trajectories that could bring
a cell to position x with direction of motion u; fortunate-
ly, we shall not need to calculate g explicitly. Further-
more, to use results of Sec. VIII, we assume that (9.2)
holds even when the cell is moving down the attractant
gradient. This last assumption contradicts experimental
findings, but we argue that it shall also not upset qualita-
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tive predictions. Comparison with experiment shall sup-
port this claim, as well as extensive simulation data to be
published elsewhere [33].

No experimental evidence exists suggesting
(a;0)#{a;){®), or that the mean speed is altered in
response to attractant stimuli, and so combining (9.2) and
(8.9), we approximate the wild-type cell flux as

—(v)}Vp—pgVC(1—(®))]

J= ) .
nCag)(1—(®))+(n— 1Dy )] ©.4)
The drift velocity in (9.4) is
2 —
(v)%gVC(1—(®)) ©.5)

Varift — n[{ag)(1—(®))+(n—1)D,,]1 "

If we assume that VC is steep, so that the tumble rate is
~0.5 s~! when cells head straight up the gradient [9],
and use (ay)=~1 s~ !, (v)=20um/s [9], we find
gVC=0.025 um~!. Taking (D,,)~0.1 rad*/s [10],
and (®)=0.5 [9], in three dimensions we find vy;e=~5
pm/s. This prediction is in reasonable agreement with
experimentally observed drift velocities of =4 um/s in
steep gradients [20]. However, swimming speeds may
range up to 30 um/s, so this quantitative agreement is
not robust. More importantly, we have predicted that
the wild-type chemotactic response is strong: the drift
velocity is ~25% of the raw swimming speed.
From (9.2), the condition (8.7) is satisfied with

Vo=—gVC(1—(®)), 9.6)
and so equilibrium results when
p(x)=p(xy)exp{g[C(x)—C(xx)(1—CO®))} . (9.7)

If C(x)—C(xy)>0, then the cells have an exponentially
higher equilibrium density at position x than at x,. By all
measures, the wild-type strategy for modulating the tum-
ble rate is very successful for seeking out food.

Given that the chemotactic behavior of wild-type
E. coli evolved over millions of years, it is hardly surpris-
ing that its strategy for chemotaxis is successful. We now
study cells that cannot adapt. The impulse response of
such cells (Fig. 2) has only a positive lobe of duration
At ~1 s [16,17], and so the cell cannot perform temporal
comparisons; instead it merely decreases the tumble rate
by an amount proportional to the average of the attrac-
tant concentration experienced over the last ~1 s. As-
suming that the attractant concentration experienced

over the last Ar seconds is relatively constant,
AtvVC << C, we approximate (1.3) as
alt)=a,—gC[x(1)], (9.8)

for a cell at position x at time z. However, because the
determination of C(x) requires At seconds, the measured
value will depend somewhat on the cell’s direction of
motion. Cells moving down (up) an attractant gradient
come from a region of slightly higher (lower) attractant
concentration; consequently, cells moving down the gra-
dient will have a lower tumble rate than those moving up.
In contrast, cells that perform temporal comparisons
have the lower tumble when moving up the gradient, so
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we expect a reverse taxis for cells that do not adapt. To
add direction dependence to (9.8), we take trajectory
averages and make the same approximations discussed
above, yielding

(alx,u))=(ay) —g[C(x)—v(At)VC-u], 9.9)

where (At) is the effective measurement duration after
trajectory averaging. Equation (9.9) has the form (5.6)
with |

(v)?[Vp+pg(At)VC(1—(®))]

J(x)=—

n{[{ay) —gC(x)](1—(®))+(n—1){D, )}

and so equilibrium results when
p(x)=p(xy)exp{ —g (At )[C(x)—C(xy)[(1—(@®))} .
(9.13)

If C(x)—C(xy)>0, cells that do not adapt have an ex-
ponentially lower equilibrium density at position x than
at x,. This strategy is clearly unsuccessful and indeed
represents reverse chemotaxis. This effect has been noted
in computer simulations [8], but has yet to be observed in
free swimming cells.

Why has reverse chemotaxis not been observed? Com-
peting pseudochemotactic effects could conceivably be to
blame. Unlike (9.4), (9.12) exhibits a diffusion coefficient
and a drift velocity that vary spatially even in a uniform
gradient. In the limit that {At¢) is very large, reverse
chemotaxis outweighs the pseudochemotactic flux. In
the opposite limit, drift down the gradient becomes less
significant than the pseudochemotactic flux toward re-
gions of high diffusion coefficient, i.e., high attractant
concentration. In theory, this small (A¢) limit might be
the relevant one for cheRcheB cells, commonly designat-
ed as adaption defective. However, the analysis below
suggests that cheRcheB cells may still have partial adap-
tion abilities, preventing reverse chemotaxis from being
observed.

X. PARTIAL ADAPTION
IN METHYLATION-DEFECTIVE CELLS?

The question of whether cheRcheB cells are chemotac-
tic has attracted interest [20—22] because these cells lack
methylating and demethylating enzymes thought to play
a significant role in E. coli’s chemosensory system (for a
review, see Ref. [34]). If these cells are found to be non-
chemotactic, this result would strengthen the view that
the absent enzymes are necessary for chemotaxis. Over
time scales of a few seconds, cheRcheB cells appear adap-
tion defection in tethering experiments [16,17], but over a
minute or so, a fraction of the cheRcheB population ap-
pears partially adaptive [17]. Experiments with swim-
ming cells show that cheRcheB tend to weakly head up
attractant gradients [21,22]; however, such results cannot
distinguish nonadaptive pseudochemotaxis from true
adaptive chemotaxis.

Experiments performed by Berg and Turner [20] were
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a,=gv(At)VC, (9.10)
and an effective
(aff(x)) =(ay,)—gC(x) . (9.11)
From (8.9), (9.10), and (9.11), we are led to the flux
, (9.12)

specifically designed to separate pseudochemotactic
effects from true chemotactic ones, and are highly amen-
able to theoretical analysis. With a population of cheR-
cheB cells placed initially at the top (bottom) of a linear
attractant gradient, Berg and Turner measured the
steady-state flux of cells moving down (up) the gradient,
Berg and Turner measured the steady-state flux of cells
moving down (up) the gradient, and found that the ratio
of the flux up the gradient to the flux down the gradient,
J./J_, was =2. However, if a second attractant was
added uniformly, causing a global reduction in «a,
J /J_=1. What do these results imply about cheRcheB
cells?

As we now show, in the absence of any drift term in
the flux, cells undergoing pseudochemotaxis alone, (2.7),
should exhibit a J, /J _ ratio of 1. At steady state in a
linear attractant gradient, the flux in the direction of the
gradient is constant and perpendicular fluxes are zero, so
we use one-dimensional theory. If x; is the length of the
gradient, integrating (2.7) from x =0 to x =x, yields a
steady-state flux

J=—Po P (10.1)

f"l dx

o D(x)

where p, and p, are the cell densities at x =0 and x =x,
respectively. If the attractant gradient is now reversed in
sign, D(x) is replaced in the integral by D(x,—x), be-
cause regions previously characterized by a low (high)
diffusion coefficient are now characterized by a high (low)
one. But this switch leaves the integral unchanged,
through the change of integration variables x’=x, —x in
(10.1). Thus pseudochemotaxis alone yields a J, /J _ ra-
tio of 1.

When we include reverse chemotaxis effects in addi-
tion, we intuitively expect adaption-defective cells to ex-
hibit a J, /J _ ratio less than 1. Using (9.12), an explicit
calculation for a linear gradient with |VC|=C" yields

Ji  [(—e *Y(41+BI*)—Bix, ]
TR, ——, (102
- [(e"'""—=1)(Al+BI*)—BIx,e” ']

where
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A=n[{ap)(1—(O))+(n—1)D )], (10.3a)
B=ngC'(1—(®)), (10.3b)
IT1=g(At)C'"(1—(O®)) . (10.3c)

The aspartate attractant gradients used by Berg and
Turner rose from 0 to 100 uM over 500 um; cheRcheB
cells typically tumbled at the rate =3 s~ ! at the bottom
of the gradient, but suppressed tumbles significantly less
near the top [35]. For the following rough calculation,
we assume no tumbles occur at the top of the gradient;
this behavior gives gC’~0.006 um~'s~!. Using the full
width at half maximum of Fig. 2 to approximate
(At)=0.5 s7!, and taking other values from above,
yields J, /J_=0.4. The finding J, /J_ <1 is robust
when pseudochemotaxis is combined with negative drift
(9.12) and is insensitive to the values chosen. Because
J . /J_ =1 for cheRcheB cells, it is likely that at least a
fraction of these cells partially adapt. However, this
adaption ability is certainly small compared to that of
wild-type cells, which exhibited J, /J_ =350 in aspar-
tate gradients ten times gentler than the gradients used in
the cheRcheB experiments.
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APPENDIX A

In this appendix we show that equilibrium is unattain-

able in the general case (5.4). We emphasize that this
J

oP _ hd

ar P 2 (ay )i1i2~»-i2k{ui1ui2 U uiZk—CZk[ail,iz

k=1

=]
- k§2(a2k—1)i1i2 ---iZk,I{uiI“iz g, T Cuul8; 8, 0

Thus, if (5.6) does not hold, then (5.4) and (A4) do not de-
scribe equilibrium.

APPENDIX B
To show

Viu=(1—nu, (B1)

i3:i4 fak—1oP2k
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proof does not exclude the possibility of steady-state solu-
tions with nonvanishing particle flux, or even equilibrium
solutions not obeying (5.6).

It is easier to work with indices and the Einstein sum-
mation convention than with boldfaced tensors. We shall
also need to know the following integrals over the
(n —1)-dimensional hypersphere:

n—1

Sﬁuilui2 s uizk+1d u=0 (A1)
and
¢uilui2 R uide”“’u
:CZkQ(n)[Sil’i28i3’i4 T 812k~1’i2k
+(all possible pairings)] . (A2)

In (A2), (all possible pairings) stands for the (2k)!/k12%
distinct products of & Kronecker deltas involving the in-
dices i to i,;. The coefficient C,; is given by the recur-
sion formula

. Cok
Cok42= 2%+ (A3a)
(k +1)2k+1
Co=1. (A3b)

Equations (4.6) and (4.11) will be recognized as special
cases of (A1) and (A2).

To see if equilibrium can be attained, we substitute
(5.4) and (5.5) into (5.3), require that the time derivative
in (5.3) vanish, and use (A1)-(A3) to find

—9;(vp) ®
——=p k§1 {Corla —1)ipiy iy,

X[8

iy gy ok —3f2k—2" fak—10]

+(all possible pairings)]} . (A4)
For equilibrium to be possible, putting (A4) and (5.6)
back into (5.1) must yield zero. Instead, we find

.

+(all possible pairings)]}

Ik —300ak =2 g — 1)

+ (all possible pairings)]} [ . (AS)

[
it is easier to use indices and the Einstein summation con-
vention than to use vector notation. Consider a vector on
the (n —1)-dimensional unit hypersphere. Representing
this vector in Cartesian coordinates in the n-dimensional
imbedding space, the ith component is

U;
(u2)!/? :

(B2)
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The denominator of (B2) manifestly contrains the vector
to have length 1, so differentiating (B2) will not involve
changes with respect to the vector’s length, only its direc-
tion. Taking the Laplacian of (B2) yields

9? u; _ 9 8, Uy
Buiz (u]%)l/Z du; (u;%)l/z (u£)3/2
. _(n +2)u18U 3ujuiu,‘
- (u,f)3/2 (ulz)S/z
- Uj
—(l—n)“(W . (B3)

Having differentiated, we explicitly set (u?)!/? to 1 in

(B3), and so reach (B1).

As an example, if direction space is the two-sphere
parametrized by the polar angle 8 and the azimuthal an-
gle @, then,

1 9 |. d 1 d?
2= — 60— —_— B4)
" sing 060 °"" 06 | sinZ6 ¢’ (
The unit vector u is represented as
sinf cosg
u= |sinfsing | , (B5)
cosf
and so Viu= —2u.
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